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CHAPTER 1

USING RANDOM NEURAL NETWORKS TO QUANTIFY

THE QUALITY OF AUDIO AND VIDEO TRANSMISSIONS

OVER THE INTERNET: THE PSQA APPROACH

Gerardo Rubino

INRIA / IRISA,
Campus de Beaulieu

35042 Rennes Cedex, France
E-mail: rubino@irisa.fr

Consider the problem of delivering multimedia streams on the Inter-
net. In order to decide if the network is working correctly, one must be
able to evaluate this delivered quality as perceived by the end user. This
can be done by performing subjective tests on samples of the received
flows, but this is expensive and not automatic. Being able to perform
this task in an automatic way and efficiently, such that it can be done
in real time, allows multiple applications, for instance in network con-
trol. Such a goal is achieved by our PSQA metric: Pseudo-Subjective
Quality Assessment. It consists of training a Random Neural Network
(RNN) to behave as a human observer and to deliver a numerical eval-
uation of quality, which must be, by construction, close to the average
value a set of real human observers would give to the received streams.
This chapter reviews our previous work on PSQA, and provides some
new elements about this technology. The use of RNN is justified by its
good performance as a statistical learning tool; moreover, the model has
nice mathematical properties allowing using it in many applications and
also obtaining interesting results when PSQA is coupled with standard
modelling techniques.

1. Introduction

Consider an audio stream sent through an IP network, or a video one, or

consider an interactive voice communication over the Internet. When qual-

ity varies, which is today very often the case (think of a wireless segment, for

instance), it is useful to be able to quantify this quality evolution with time,

in order to understand how the global communication system works, why

the performance is as observed, how it can be improved, how the system

1
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can be controlled to optimize quality, etc. Observe that we are here inter-

ested in quantifying the quality as perceived by humans users. This task is

so useful when analyzing a networking application dealing with these kinds

of flows that it has been standardized (some examples are 1 for audio flows

and 2 for video ones). The corresponding area is called subjective testing.

In a nutshell, it consists of taking a panel of human observers (say, around

10 to 20 persons sampled from the global population of observers, or a few

experts, say 3 or 4, the choice between random observers or experts de-

pending on the goals), and making them evaluate numerically the quality

as they perceive it, by comparing an important number of sequences. The

main problem with this approach is that it is expensive and, by definition,

it is not an automatic process (and a fortiori not a real-time one).

If we try to perform this quality quantyfying process automatically, a

first idea is to use objective tests. This basically refers to using techniques

coming from coding, where the original sequence σ and the received one σ′

are compared by computing some distance between them. A typical example

of this is the PSNR metric (Peak Signal to Noise Ratio). It is well known

that this approach does not correlate well with subjective ones, that is,

with values coming from real human observersa. In ? we specifically discuss

about the bad behaviour of PSNR for video analysis.

In a series of papers 3,4,5 we developed a new methodology called PSQA

(see next section). It allows to reach the objective of being able to measure

quality as perceived by the users, automatically and accurately. This chapter

describes the approach and some of its applications. Next section describes

PSQA; Section 3 is a short presentation of Random Neural Networks, the

mathematical tool used to implement the PSQA technology, with some

new elements concerning sensitivity analysis; in Section 4 we explain how

we couple PSQA with standard performance evaluation techniques, close

to the work presented in 5. Section 5 concludes the chapter.

2. The PSQA technology

PSQA stands for Pseudo-Subjective Quality Assessment, and it is a tech-

nology proposed first in 3 (under the name QQA: Quantitative Quality

Assessent), in order to perform this quantyfing task automatically, in real-

aWhat we say is that objective measures are not good to quantify quality when con-

sidering flows that have been perturbated by travelling through a network where they

can suffer from losses, delays, etc. They are of course very useful when analyzing coding

effects.
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time if necessary, and accurately. This last condition means that a PSQA

metric must give to a stream a value close to the value an average human

observer would give to it (or, in other cases, a pessimistic expert, or an

optimistic one, depending on the goals of the study), as coming out of a

subjective testing experiment. To describe how PSQA works, let us con-

sider the following example, which a simplified version of the one used in 3.

We want to analyze a video streaming application, sending its flows from a

source to a receiver. We proceed as follows:

(1) We first identify a set of parameters which, beforehand, we think have

an (important) impact on the perceived quality. Observe that this is an

a priori assumption. These parameters are of two classes: those related

to the codec, which we assimilate to the source sending the stream, and

those associated with the network transporting the data.

In our example, let us consider that the sending process can work at

different bit rates BR, given in bps (bits per second), and at differ-

ent frame rates, FR, in fps (frames per second). Assume that (i) the

frames have all the same size in bits, (ii) there is no protection against

losses (such as FEC – Forward Error Correction), (iii) the player at the

receiver side can play a sequence with missing frames.

Concerning the network, we assume that the main problem is loosing

packets since the receiver has a large buffer to absorb the possible

variations in delay (jitter). For the loss process, given its importance

we decide to characterize it by two parameters, the packet loss rate

LR and the mean loss burst size MLBS, the latter giving an indication

about how the losses are distributed in the flow.

(2) For each selected parameter we choose a range, corresponding to the

system to be analyzed and the goals; we also choose a discrete set

of values, which make the rest of the process simpler. For instance,

in 3 it is considered that LR ∈ {0%, 1%, 2%, 3%, 5%, 10%}. Each

combination of values for these parameters is called a configuration of

the system. The total number of configurations can be high (in our

previous applications of PSQA we always had spaces with thousands

of points).

(3) We perform a selection of M configurations among the set of all possible

ones. Typically, for 4 to 6 parameters we used M around 100 to 150.

This selection process is made by a merge of two procedures: (i) different

configurations are built by randomly choosing the parameters’ values in

the given space and (ii) several configurations are choosen by covering
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in some way the extremities of the parameters’ ranges (see 3).

We randomly separate the set of M selected configurations into two

subsets C = {γ1, · · · , γK} and C′ = {γ′
1, · · · , γ′

K′}. We thus have K +

K ′ = M (for instance, in our applications, if M ≈ 100 we will take,

say, K ≈ 80, or 85, and K ′ ≈ 20, or 15. Set C will be used to learn and

set C′ to validate (see step (7)).

(4) We build a plat-form allowing (i) to send a video sequence through an

IP connection, (ii) to control the set of parameters chosen in the first

step; in the example, we must be able to choose simultaneously any

values of the four parameters BR, FR, LR, MLBS.

(5) We choose a sequence σb representative of the population of sequences

to be considered; according to the norms used in video subjective test-

ing, σ must be about 10 sec length. We send σ exactly M times from

sender to receiver, using the platform, and each time using the values

in each of the selected configurations (sets C and C′). We obtain two

sets of distorted copies of σ: the copy corresponding to configuration

γi, 1 ≤ i ≤ K (resp. γ′
j , 1 ≤ j ≤ K ′) is denoted by σi (resp. by σ′

j).

(6) We perform a subjective testing experiment using the M sequences

σ1, · · · , σK , σ′
1, · · · , σ′

K′ . This consists of selecting a panel of human

observers and asking them to numerically evaluate the quality of the

M sequences as they perceive them. For this purpose an appropriate

norm must be followed. In our video experiments, we used 2.

Each sequence will thus receive a value usually called MOS (Mean Opin-

ion Score). We denote the MOS of sequence σi (resp. of σ′
j) by Qi (resp.

by Q′
j). In more detail, assume there are R observers (typically, R ≈ 20

if the observers are random elements of the population, or R ≈ 4 if they

are experts) and that observer r gives, at the end of the experiment,

value qri to sequence σi (and value q′rj to sequence σ′
j). Then, we must

perform a statistical test to detect bad observers in the panel (case of

random observers); in words, a bad observer is one that does not (sta-

tistically) agree with the majority, see 3. Assume (after a re-ordering

of the observers’ indexes) that observers R′ + 1, · · · , R are bad ones.

Then, their scores are taken out of the set, and the sequences receive as

MOS the average of the values given to it by the good observers; that

is, Qi =
∑R′

r=1 qri/R′ (and Q′
i =

∑R′

r=1 q′ri/R′).

(7) We now identify configuration γi with quality value Qi (and γ′
j with

bActually, we must do the whole process with several different sequences; we just present

the technique for one of them.
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Q′
j), and look for a real function ν() of 4 variables associated with

the four selected parameters, such that for any set of values in the set

C the function returns a number close to the associated MOS value.

That is, for any γi ∈ C, ν(γi) ≈ Qi. This is the learning phase. It

can be done with different tools. We tried standard Artificial Neural

Networks (ANN), Bayesian Networks and RNN. As illustrated in 3,

RNN performed by far the best, and that is the main reason why we

used that tool.

Remark: before the learning phase, it is more comfortable to scale the

input variables by dividing them by their maximal possible value (recall

that in the second step we associate a range with each variable). This

way, all input variables are in [0..1]; the same is done with the output,

which corresponds to the normalized quality value.

(8) After having found the ν() function, we must go through the validation

phase consisting of testing its value on the set of configurations in C′.

If for γ′
i ∈ C′ it is ν(γ′

i) ≈ Q′
i, then ν() is validated and the process is

finished.

Of course, if this is not the case, something was wrong in the previous

process (not enough data, bad sampling of configurations, etc.).

(9) Using the evaluator consists now of measuring BR, FR, LR and MLBS,

for instance at the receiver of a communication, and calling ν() with

the measured values as input. This can be done in real time since the

inputs can be collected in real time, and the evaluation of ν() is not

expensive.

The next section briefly explains what is a RNN and how it is used in

learning (phase (7)).

3. The Random Neural Networks tool

We first present the mathematical RNN model and the particular case we

use in the application presented in this chapter. Then, some elements about

the use of the model as a learning tool are given. To have an idea about the

multiple applications of this tool that have been already published, see 10.

3.1. G-networks

A Random Neural Network is a queueing network (also called a G-network),

invented by E. Gelenbe in a series of papers 7,8,9 by merging concepts from

neural networks and queueing theory. Its nodes are called queues or neurons,
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depending on the context, but they are the same mathematical object. The

customers or units of the queueing network are called “signals” at the neural

side. In this chapter, we will use both terminologies, the neural one and the

concepts from queueing models, depending on the specific topic we are

speaking about.

The set of nodes in the network is N = {1, · · · , N}. The queueing

network receives two types of customers from outside, called positive and

negative. Neuron i receives positive units from outside with rate λ+
i ≥ 0

and negative units from outside with rate λ−
i ≥ 0. Both arrival processes

are Poisson. At least one neuron receives positive units from outside; that

is,
∑

i∈N λ+
i > 0.

Nodes are FIFO queues (this is not essential but it simplifies the presen-

tation) with a single exponential server and infinite room. The service rate

at neuron i is µi > 0. Positive units behave as usual customers in queuing

networks: they arrive at the node and wait in the queue until the server is

available, then get service and are sent to another queue or to outside. When

a negative customer arrives at a queue, it destroys itself instantaneously,

and if the queue was not empty, the last customer in it is also destroyed.

Moving from a queue to another or to outside is an instantaneous process,

as usual.

Observe that the previous description means that negative units can

not be observed, only their effects can; the network never has negative

customers in it. Denote by Xi(t) the number of (positive) units in neuron i

at time t, also called the potential of neuron i. Neuron i is said to be

active at time t iff Xi(t) > 0. When neuron i is active, it sends units

(positive or negative) to other neurons or to outside (with rate µi). When

a (positive) customer ends getting service at neuron i, it goes to neuron j

as a positive one with (routing) probability p+
i,j and as a negative one with

(routing) probability p−i,j . The unit leaves the network with probability

di = 1 −
∑

j∈N (p+
i,j + p−i,j).

The previous description means that when neuron i is active, it sends

positive signals to neuron j with rate (also called here weight) w+
i,j = µip

+
i,j

and negative ones to neuron j with rate w−
i,j = µip

−
i,j ; it sends units outside

with rate δi = µidi. Observe that δi +
∑

j∈N (w+
i,j + w−

i,j) = µi.

In the stable case, the activity rate of neuron i (the utilization rate of

queue i) is %i = limt→∞ Pr(Xi(t) > 0) > 0; also, the mean throughput of

positive units or signals that arrive at neuron i is T+
i = λ+

i +
∑

j∈N %jw
+
j,i,

and the mean arrival throughput of negative units at i is T−
i = λ−

i +∑
j∈N %jw

−
j,i. Look at neuron i as a queue and assume process Xi() is
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stationary. Consider that destroyed customers are departures and apply

the mean flow conservation theorem: we obtain T+
i = %i(µi + T−

i ) and

thus,

%i =
T+

i

µi + T−
i

.

Last, we place ourselves in the standard independence conditions concern-

ing all arrival, service and switching (choosing next node and class, or out-

put, for a signal leaving a neuron) processes (as usual in queueing network

models).

A basic result is then the following.

Theorem 1: The vector occupation process of this network is a Markov

chain with state space N
N . Assume it is irreducible (this depends on the

routing probabilities of the model and on the arrival rates), and consider

the relations

T+
i = λ+

i +
∑

j∈N

%jw
+
j,i, T−

i = λ−
i +

∑

j∈N

%jw
−
j,i and %i =

T+
i

µi + T−
i

as a (non-linear) system of equations in the set of unknowns

(T+
i , T−

i , %i)i=1,··· ,N . Then,

(i) The network is stable iff the system of equations has a solution where

for i = 1, · · · , N we have %i < 1; in this case, the solution is unique.

(ii) In the stable case, the network is of the product-form type, and we have

lim
t→∞

Pr(X1(t) = n1, · · · ,XN (t) = nN ) =

N∏

i=1

(1 − %i)%
ni

i .

Proof: The proof is based on standard properties of Markov chains. See

papers 7,8.

For instance, consider a single G-queue with arrival rate of positive

(resp. negative) customers equal to λ+ > 0 (resp. to λ− ≥ 0) and service

rate µ > 0. Then, applying Theorem 1 we have that the queue is stable

iff λ+ < µ + λ−, and in that case, its stationary state distribution is n 7→

(1−%)%n, where % = λ+/(µ+λ−). The mean backlog at the queue (the mean

potential of the neuron) is λ+/(µ+λ−−λ+). Observe that its occuppation

process is that of a M/M/1 queue with arrival rate λ+ and service rate

µ + λ−.
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3.2. Feedforward 3-layer G-networks

In a feedforward queueing network, a customer never visits the same node

twice. This makes the analysis simpler. In the case of a G-network, the

non-linear system presented in Theorem 1 has an “explicit” solution.

A 3-layer model is a particular case of feedforward networks. There

are three types of nodes: the “input” nodes (their set is I), which are the

only ones receiving signals from outside, the “hidden” ones (their set is

H) receiving all the signals leaving input nodes, and the “ouput” nodes

(their set is O), receiving all the signals leaving hidden ones, and sending

all their signals outside. There is no connection between nodes in the same

subset. Moreover, for learning applications, it is usually assumed that there

is no negative unit coming to the network from outside; we make the same

assumption here.

The particular topology of the network makes that we have explicit

expressions of the activity rates of all neurons, starting from set I, then

going to H and last to O. Consider an input neuron i. Since no other neuron

can send units to it, we have %i = λ+
i /µi. Now, for a hidden neuron h, we

have

%h =

∑
i∈I %iw

+
ih

µh +
∑

i∈I %iw
−
ih

=

∑

i∈I

λ+
i w+

ih/µi

µh +
∑

i∈I

λ+
i w−

ih/µi

.

Last, for any output neuron o, the corresponding expression is

%o =

∑
h∈H %hw+

ho

µo +
∑

h∈H %hw−
ho

=

∑
h∈H

∑

i∈I

λ+
i w+

ih/µi

µh +
∑

i∈I

λ+
i w−

ih/µi

w+
ho

µo +
∑

h∈H

∑

i∈I

λ+
i w+

ih/µi

µh +
∑

i∈I

λ+
i w−

ih/µi

w−
ho

.

As we will see next, when this queuing network is used to learn, it is seen

as a function mapping the rates of the arrival processes into the activity

rates of the nodes. In this 3-layer structure, we see that the function ~λ+ =

(λ+
1 , · · · , λ+

N ) 7→ %o is a rational one, and it can be easily checked that both

its numerator and denominator are in general polynomials with degree 2H

and non-negative coefficients.
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3.3. Learning

Assume we are interested in some real function f() from [0..1]2N into [0..1]N .

Function f() itself is unknown, but we have K input-output values whose set

is D = (~l (1),~c (1)), · · · , (~l (K),~c (K)) (that is, f(~l (k)) = ~c (k), k = 1, · · · ,K).

We can use a stable G-network to “learn” f() from the data set D. For this

purpose, consider a general RNN (not necessarily fedforward) with N nodes

and all arrival rates in [0..1]. Now look at it as a black-box mapping the rates

of the arrival process (the 2N numbers λ+
1 , · · · , λ+

N , λ−
1 , · · · , λ−

N ) into the

activity rates (the N numbers %1, · · · , %N ). We associate, for instance, the

first N input variables of f() with the arrival rates of positive units to nodes

1 to N , then the next N input variables with the arrival rates of negative

units, last the N output variables of f() with the activity rates of the G-

network. The service rates and the routing probabilities (or equivalently, the

weights) are seen as parameters of the mapping. The latter is here denoted

as ν(~λ), or ~ν(W, ~µ; ~λ), etc., depending on making explicit the parameters

or not, with W = (W+,W−), W+ = (w+
ij), W− = (w−

ij),
~λ = (~λ+, ~λ−),

~λ+ = (λ+
1 , · · · , λ+

N ), ~λ− = (λ−
1 , · · · , λ−

N ), and ~µ = (µ1, · · · , µN ).

Learning means looking for values of the parameters such that (i) for

all k = 1, · · · ,K we have ν(~l (k)) ≈ ~c (k) and, moreover, (ii) for any other

value ~x ∈ [0..1]2N we have ν(~x) ≈ f(~x). This last condition is experimen-

tally validated, as usual in statistical learning, even if there are theoretical

results about the way these ν() functions can approximate as close as de-

sired any f() function having some regularity properties. In order to find an

appropriate G-network, the standard approach is to look only for network

weights (matrix W ), the rest of the parameters being fixed. To do this, we

consider the cost function

C(W ) =
1

2

K∑

k=1

∑

o∈O

[
νo(W ; ~l (k)) − c(k)

o

]2

,

and we look for minima of C() in the set {W ≥ 0}c. A basic way to find

good values of W is to follow a gradient descent approach. This process

helps in understanding the algebraic manipulations of these models while

much more efficient procedures exist (for instance, quasi–Newton meth-

cThere can be stability issues here, depending on how we deal with the remaining para-

meters (service rates or departure probabilities), but we do not develop the point further

for lack of space. Just observe that fixing the service rates high enough allows to control
stability. For instance, µi = N for all neuron i is trivially sufficient for stability (recall

we assume all arrival rates in [0..1]).
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ods). For the basic approach, we build a sequence of matrices W (0), W (1),

. . . , (hopefully) converging to a pseudo-optimal one (that is, a matrix Ŵ

such that C(Ŵ ) ≈ 0). For instance, for all i, j ∈ N , the typical update

expressions for the weights between neurons i and j are

w+
i,j(m + 1) = w+

i,j(m) − η
∂C

∂w+
i,j

(W (m)),

w−
i,j(m + 1) = w−

i,j(m) − η
∂C

∂w−
i,j

(W (m)).

Factor η > 0 is called the learning factor ; it allows to tune the convergence

process. Observe that the previous expression can lead to a negative value

for w+
i,j(m + 1) or for w−

i,j(m + 1). An usual solution to this is to use the

iterations

w+
i,j(m + 1) =

[
w+

i,j(m) − η
∂C

∂w+
i,j

(W (m))

]
∨ 0,

w−
i,j(m + 1) =

[
w−

i,j(m) − η
∂C

∂w−
i,j

(W (m))

]
∨ 0.

Another possible decision is to freeze the value of an element of W (m)

when it reaches value zero. These are standard points in basic optimization

methodology.

It remains how to compute the partial derivative in the previous expres-

sion. Writing

∂C

∂w∗
∗

=
K∑

k=1

∑

o∈O

[
νo(W ; ~l (k)) − c(k)

o

] ∂νo

∂w∗
∗

,

we see that we still need to calculate the partial derivatives of the outputs,

that is, of the activity rates, with respect to the weights.

After some algebra we can write the following relations: if ~% is the vector

~% = (%1, · · · , %N )d,

∂~%

w+
uv

= ~γ+
uv(I − Ω)−1,

∂~%

w−
uv

= ~γ−
uv(I − Ω)−1,

where

Ωjk =
w+

jk − %kw−
jk

µk + T−
k

,

dAll vectors are row vectors in this chapter.
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~γ+
uv =

%u

µv + T−
v

~1v, ~γ−
uv = −

%u%v

µv + T−
v

~1v = −%v~γ
+
uv,

vector ~1j being the jth vector of the canonical base of R
N .

A compact way of writing these derivatives is as follows. Denote by

R the diagonal matrix R = diag(%i)i∈N and by D the diagonal matrix

D = diag(µi + T−
i )i∈N . Now, let i be fixed and let A(i) = (A

(i)
uv) and

B(i) = (B
(i)
uv ) be given by

A(i)
uv =

∂%i

w+
uv

, B(i)
uv =

∂%i

w−
uv

.

We have:

A(i)
uv =

%uMvi

µv + T−
v

=
%uMvi

Dvv

, B(i)
uv = −

%u%vMvi

Dvv

= −A(i)
uv ,

where M = (I − Ω)−1. Vector (M1i, · · · ,MNi)
T, the ith column of M , can

be written M~1T
i . We now can write

A(i) = ~%T
(
M~1T

i

)T

D−1 = ~%T~1iM
TD−1.

In the same way,

B(i)
uv = −~%T~1iM

TD−1R.

Resuming, learning means minimizing and minimizing means in this con-

text, computing derivatives. This in turn means, in the general case, invert-

ing a matrix whose dimension is equal to the number of parameters (the

variables in the minimization process). In the particular case of feedforward

models, the inversion can be done very easily (with an appropriate order in

the variables, the matrix to invert is a triangular one).

3.4. Sensitivity analysis

One of the consequences of the nice mathematical properties of G-networks

is that they allow to perform sensitivity analysis in a systematic way. Sen-

sitivity analysis means here to be able to compute the derivatives of the

activity rates with respect to the arrival rates.

After some straightforward algebra, we get the following relations: if

u 6= i,

∂%i

∂λ+
u

=
∑

j

∂%j

∂λ+
u

Ωji,
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and

∂%i

∂λ+
i

=
∑

j

∂%j

∂λ+
i

Ωji +
1

µi + T−
i

.

In the same way, if u 6= i,

∂%i

∂λ−
u

=
∑

j

∂%j

∂λ−
u

Ωji,

and

∂%i

∂λ−
i

=
∑

j

∂%j

∂λ−
i

Ωji −
%i

µi + T−
i

.

In matrix form, let us denote F = (Fiu) and G = (Giu) where Fiu =

∂%i/∂λ+
u and Giu = ∂%i/∂λ−

u . If u 6= i, we have

Fiu =
∑

j

FjuΩji =
∑

j

ΩT
ijFju and Giu =

∑

j

GjuΩji =
∑

j

ΩT
ijGju.

When u = i,

Fii =
∑

j

ΩT
ijFju +

1

µi + T−
i

and Gii =
∑

j

ΩT
ijGju −

%i

µi + T−
i

.

Using the same notation than in previous subsection, this leads to the

expressions

F = D−1MT and G = D−1RMT.

As we see, the general formulæ for performing sentitivity analysis in the gen-

eral case need the inversion of the same matrix as for the learning process.

As before, a feedforward network structure simplifies considerably the com-

putations (only a triangular matrix must be inverted).

4. Applications

In the case of the example described in Section 2, we use a RNN having

4 input nodes (corresponding to the 4 selected variables, BR, FR, LR and

MLBS) and one output node, corresponding to the quality of the flow. Some

details about the performance of RNN in the learning phase, their relative

insensitivity with respect to the size of the subset of hidden nodes (in a

reasonable range), and in general, their main properties, can be seen in 3.

For audio flows, see 4.

The first direct application of the PSQA technology is to analyze the

impact of the selected variables on perceived quality. Since once the RNN
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has learnt from data we have a function giving quality values for any con-

figuration in the space we defined at the beginning of the process, we are

able to analyze this quality function as a function of a part of the input

vector, to compute its sensitivity with respect to the input variables, etc.

Again, we refer to the given papers to see details about these results.

A second and richer set of results is as follows. Suppose you are inter-

ested in analyzing the impact of some specific part of the communication

structure on quality. For instance, consider again our video example, and

assume you want to analyze the impact of the size H of a specific buffer on

quality. If you have a model that is able to evaluate the impact of H on the

network parameters you selected when applying PSQA (LR and MLBS in

our example), then you can map H into quality and perform your analysis

efficiently. An example of this is 6, where we analyze the effect of FEC

(Forward Error Correction) on the quality of voice flows. The basis of the

approach are in 5. Let us explain here this approach with more details, but

keeping our video example of Section 2.

Assume we send a video stream using packets of constant length B bits

through the Internet, from some source S to a receiver R. Applying the

PSQA methodology, we get an explicit function Q = ν(BR,FR,LR,MLBS)

where BR is the bit rate of the connection, FR its frame rate, LR is its end-

to-end loss probability and MLBS the average size of its bursts of losses.

The connection has a bottleneck with capacity c bps, and it is able to

store up to H packets. For simplicity, assume that a packet contains exactly

one frame. The flow of packets arriving to this bottleneck is Poisson with

rate λ pps (packets per sec). With the standard assumptions, this node

is a M/M/1/H queue (at the packet level), leading to simple expressions

of the loss probability p and (see 5) mean loss burst size M . We have

p = (1−%)%H/(1−%H+1) and, after analyzing the Mrkov chain, M = 1+%,

where the load % = λB/c is assumed to be 6= 1. If our flow is the only one

using the bottleneck node, its quality can be written Q = ν(λB, λ, p,M).

More explicitly, this gives

Q = ν

(
λB, λ,

(1 − λB/c)(λB/c)H

1 − (λB/c)H+1
, 1 + λB/c

)
.

If other flows share the same bottleneck, then the difficulty lies in analyzing

the loss rate and the mean loss burst size of our connection at that node.

For instance, consider the case of K different flows sharing the node, with

troughputs λ1, · · · , λK . Our flow is number 1. For simplicity, let us consider

that all packets sizes are the same, B bits, and that the node can handle up
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to H packets of all types. With the standard exponential assumptions, we

have now a multiclass FIFO M/M/1/H model with input rates λ1, · · · , λK

and service rate µ = c/B. We need now to compute the loss probability for

class 1 customers and the mean loss burst size of these customers. Since

we assume Poisson arrivals, the loss probability is the same for all classes

and thus can be computed from the M/M/1/H single class formula with

λ = λ1 + · · · + λK . It remains the problem of the mean burst loss size

for class 1 customers. The first sub-problem is to define a burst in this

multiclass context. Following 6, we define a burst in the following way.

Assume a packet of class 1 arrives at a full queue and is lost, and assume

that the previous class 1 packet that arrived was not loss. Then, a burst of

class 1 losses starts. The burst ends when a packet is accepted, whatever

its class is. See 6 for a discussion about this definition.

Let us denote by LBS the loss burst size for class 1 units. We have that

Pr(LBS > n) = qn, where

q =
∑

m≥0

(
λ − λ1

λ + µ

)m
λ1

λ + µ
=

λ1

λ1 + µ
.

The last relationship comes from the fact that we allow any number of

class k 6= 1 units to arrive as far as their are lost, between two class 1 losses

(that is, while the burst is not finished, no departure from the queue is

“allowed”). Using the value of q, we have

E(LBS) =
∑

n≥0

Pr(LBS > n) = · · · = 1 +
λ1

µ
.

With a straightforward extension of the results in 11, the analysis can be

extended to the case of packets with different sizes for different flows. The

discussion’s aim was to show the kind of difficulty we may have to face

at, when coupling PSQA to standard performance models. In some more

complex cases the mapping from the variables the users wants to analyze

and the inputs to the ν() function will need a simulator.

5. Conclusions

Using RNN, we have developed a technology allowing to put the perceived

quality of a video (or audio, or multimedia) stream (that is, a subjective

object, by definition) into numbers, after the flow arrives at the receiver

through the Internet, and automatically. This evaluation process is not

time consuming and can be therefore done in real time, if necessary.
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When coupled with a standard performance model, this approach can

allow the analyst to dimension a system adressing directly quality and not

indirected metrics (such as those related to losses, delays, etc.). For instance,

he/she will find the optimal channel speed (or buffer size, or number of

terminals) that allows keeping quality over some threshold, instead of doing

the same with loss rates, or delays, or jitter. The approach allows to work

directly with quality, the “ultimate target”.

Ongoing work with this technique includes applying it to control ex-

periments, or to quality assessment in an operating network. Concerning

the methodology itself and in particular the RNN tool, ongoing efforts are

being done in order to explore efficient learning algorithms together with

analyzing the mathematical properties of these specific dynamic models.
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